
Il Mulino - Rivisteweb

Stefano Battiston, Guido Caldarelli
Systemic Risk in Financial Networks
(doi: 10.12831/75568)

Journal of Financial Management, Markets and Institutions (ISSN 2282-717X)
Fascicolo 2, agosto-dicembre 2013

Ente di afferenza:
()
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Abstract

Financial inter-linkages play an important role in the emergence of financial instabilities and the for-
mulation of systemic risk can greatly benefit from a network approach. In this paper, we focus on the role 
of linkages along the two dimensions of contagion and liquidity, and we discuss some insights that have 
recently emerged from network models. With respect to the issue of the determination of the optimal 
architecture of the financial system, models suggest that regulators have to look at the interplay of net-
work topology, capital requirements, and market liquidity. With respect to the issue of the determination 
of systemically important financial institutions the findings indicate that both from the point of view of 
contagion and from the point of view of liquidity provision, there is more to systemic importance than 
just size. In particular for contagion, the position of institutions in the network matters and their impact 
can be computed through stress tests even when there are no defaults in the system.
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1 Introduction

Systemic risk in finance denotes in general the risk of collapse of a major part of the 
financial market with the disruption of critical functionalities. In this paper, we mean 
more specifically the risk of default or distress of a large part of the financial institutions. 
There is growing consensus around the idea that financial inter-linkages play an important 
role in the emergence of financial instabilities, and that the mathematical formulation of 
systemic risk can greatly benefit from a network approach (Haldane, 2009).

The first reason why linkages matter is that they can have ambiguous effects: on the 
one hand, they increase individual profitability and reduce individual risk, but on the 
other hand, they propagate contagion and distress, thus increasing systemic risk. On this 
topic several issues remain open but much work has already been done in recent years 
(Allen et al., 2011; Allen and Gale, 2000; Battiston et al., 2012a,b; Beale et al., 2011; 
Cont et al., 2011; Gai et al., 2011; Gai and Kapadia, 2010; Greenwald, Bruce and Stiglitz, 
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1993; Haldane and May, 2011; Stiglitz, 2010). In addition, to be relevant for contagion 
interlinkages are also relevant for liquidity provision (Gai et al., 2011). The second reason 
is more subtle and seldom formalized. On the one hand, institutions have an incentive 
to become too-connected-to-fail and too-correlated-to-fail (Acharya, 2009). They thus 
form tightly knit structures (Boss et al., 2004; Cajueiro and Tabak, 2008; Craig and Von 
Peter, 2010; De Masi et al., 2006; Iori, De Masi, Precup, Gabbi and Caldarelli et al., 2008; 
Soramäki et al., 2007; Upper and Worms, 2004; Vitali et al., 2011) and gain exposures to 
similar risks (Gai and Kapadia, 2010). On the other hand, once these structures emerge 
in the financial system, they alter the incentives of each institution with respect to risk 
taking, and they may provide groups of institutions with market power or put them in 
the position to influence the debate on regulation.

In this paper, we leave out the strategic valence of financial linkages and we focus on 
their role along the two dimensions of contagion and liquidity. Our aim is to discuss 
some issues and insights from network models that have recently emerged regarding in 
particular: 1) the optimal architecture of financials system and 2) the determination of 
the systemically important financial institutions.

The paper is organized as follows. In the rest of the Introduction we provide an over-
view of the network approach to modeling financial systems, some relevant literature 
from other fields that helps us understanding the problem in a broader context, and a 
summary of the results. In Section 2 we examine the role of liquidity in default cascades 
and the insights we learn about architectures. In Section 3 we discuss a recent method 
to assess the systemic impact of financial institutions in terms of distress. In Section 4 we 
discuss a complementary method to assess the systemic impact of financial institutions 
in terms of liquidity. In Section 5 we draw conclusions.

1.1 Interacting Networks in the Financial System

The financial system can be regarded as a network in the following way. Financial insti-
tutions can be represented as nodes and financial dependencies due to contracts between 
counterparties or balance-sheet interlocks can be represented as links. Whenever the identity 
of the counterparties, their past relations and their financial fragility matter, thinking of the 
system as a network improves our understanding (e.g. in comparison to thinking of it as a 
simple market place where prices incorporate all the relevant information). Moreover, it is 
crucial to add securities to this picture, represented as a second type of node. The fact that 
institutions invest in a given security or are exposed to its price variation via some (publicly 
traded) derivative contract can also be represented as a second type of link. This general 
network representation covers for instance the case of a system consisting of an interbank 
market (where banks are connected via balance-sheet interlocks because the assets of one 
are the liabilities of some other ones) and an external assets market (where banks are con-
nected through financial instruments issued outside the financial network). In particular, 
examples of classes of external assets are: (1) mortgage-backed securities played a role in the 
subprime crisis in 2008-2009; (2) sovereign bonds are playing a role in the current period 
2011-2012; (3) links arising through underlying real assets, e.g., the price of housing. It is 
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very important to notice that distress propagates not only via institution-institution linkages 
but also via institution-security linkages. For instance, the fire-selling of one institution has 
negative externalities on those institutions that are exposed to the same asset or asset class. 
This institution may then propagate distress both to the institutions that are exposed to them 
and to the securities they are exposed to. Many of the effects that are relevant for systemic 
instabilities can be described within the above general network representation.

Overall then, in this setting, there are two types of connections among banks, both 
conducive of the spreading of financial distress. One the one hand, shocks move from a 
bank to another via the direct interlocks between balance sheets. That is, since the liabilities 
of one bank are the assets of some other banks, the default of the debtor may be better 
implies a loss for the creditors, as we will see in Section 2. However, as we will see later 
on in Section 3, even if the obligor does not default, some distress spreads to the creditors 
anyway. Indeed, the fact that the equity of the obligor is being depleted implies that the 
market value of its obligations decreases. Notice that complementary to contagion, but not 
less important, is the issue of liquidity provision. Indeed, in case creditors decide to hoard 
liquidity rather than providing it to other market players, this has negative externalities 
to the other institutions and to the system hampering its functionality. Accordingly, the 
identification of the institutions that are systemically important has to account not only 
for the potential contagion an institution may cause but also for their role as liquidity 
providers, as we discuss in Section 4.

On the other hand, there are indirect connections among banks due to the fact that 
they invest in common assets. This implies that, for instance, if as a result of a shock 
on the price of an asset, a bank sells a quantity of that asset sufficient to move down 
the price, the other banks holding the same asset will experience both the initial shock 
and the secondary shock and may start in turn to sell the asset themselves, triggering a 
devaluation spiral.

It has been argued that many financial crises originate from bubbles in some asset 
market, typically assets associated with the housing sector (Alessi and Detken, 2011). 
Accordingly, in the banking crisis of 2008, the overlapping portfolios channel played a 
major role in triggering the downturn. Therefore, the ultimate objective of contagion 
models should be to incorporate both the effects coming from overlapping portfolios 
and balance sheet interlocks. However, more attention should be devoted to the fact 
that the interlocking balance sheet channel can greatly amplify the effects of shocks 
acting along the overlapping portfolio channel. Moreover, from a mathematical point of 
view, the network of banks and assets is a bipartite network meaning that there are no 
edges between the nodes in the same class – indeed assets do not invest in other assets. 
This network can be «projected» into a network of banks in which the relations now 
represent the fact that two banks hold one or more assets in common, the weight of the 
edge reflecting the magnitude of the overlap. As it will be argued in more detail later 
on, although the economic mechanism behind is completely different, there are formal 
analogies in the spreading of contagion in the two types of networks and lessons to be 
learnt on one can provide insight for the other. In light of these considerations, in the 
following section we will focus on the contagion along the balance sheet interlock and 
we will give insights on how the overlapping portfolios issue can be incorporated.
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1.2 Failure Cascades in Complex Systems

The dynamics of default cascades on financial networks as we described earlier is for-
mally equivalent, or very similar, to a number of dynamical processes that have been long 
studied in other fields. In cascading dynamics, some network nodes are assumed to fail 
at the beginning of the process. Their failures increase the load (or the level of distress) 
of the neighboring nodes. When this load at a node exceeds its threshold (i.e. its indi-
vidual robustness) the node fails, possibly triggering a cascade. This type of propagation 
dynamics has been initially studied in paradigmatic models such as the sandpile model 
(Bak et al., 1988) and the Bak Sneppen model (Bak and Sneppen, 1993) and later on in 
more specific models applied to a series of different situations, ranging from earthquakes 
to fractures, or species extinctions.

Interestingly there are also some early applications of very similar models to social 
contexts as for instance in models of social activation (Granovetter, 1978; Watts, 2002). 
In particular, the problem of characterizing the cascade size (i.e. the number of nodes 
eventually failing in this process) and its probability distribution is the natural coun-
terpart of the notion of systemic risk in the financial system. Regarding cascade size 
several analytical investigations have been carried out (Gleeson and Cahalane, 2007), 
including the effect of heterogeneity in the thresholds (Lorenz et al., 2009) and the 
cases of degree-correlated networks (Payne et al., 2009), clustered networks (Hackett et 
al., 2011), and multiplex networks (Brummitt et al., 2012). A large body of work has 
investigated numerous variants, including: (a) the propagation of fractures in a system 
of fibers (Kim et al., 2005); (b) the case in which the load at every node is the total 
number of shortest paths passing through the node (Crucitti et al., 2004; Motter and 
Lai, 2002); (c) the case in which links (rather than nodes) topple (Moreno et al., 2007); 
(d) cascades of rewiring of links leading to self-organized scale-free networks (Bianconi 
and Marsili, 2004); (e) the sandpile model (Goh et al., 2003), as well as its variant on 
several interdependent networks (Brummitt et al., 2012); ( f) the percolation process in 
interdependent networks (Buldyrev et al., 2010). Most of the attention in these works 
has focused on the conditions under which the distribution of the cascade size follows a 
power-law. Interestingly, many of these variants can be mapped into a few model classes 
(Lorenz et al., 2009).

Epidemic spreading and virus contagion models in the spirit of the famous Susceptible-
Infected-Susceptible (SIS) model, can also be seen as a dynamic process with important 
formal similarities to financial contagion. A crucial result from the investigation of the 
SIS model is that scale-free networks behave markedly different from random graphs since 
the epidemic threshold of the infection rate tends to zero for large network size (Pastor- 
Satorras and Vespignani, 2001), meaning that no matter how small the rate of infection 
is there will always remain a significant fraction of infected nodes in the population.

Notice that in most cascade models based on the mechanism of load redistribution, 
adding links in the network tends to dilute the effect of a failure on the neighbors, mean-
ing that a more dense network is also more robust against cascades. On the contrary, 
in contagion models, more links tend to help propagating failures more effectively so 
that a more dense network is more fragile. An important lesson for financial contagion 
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follows from this consideration. In financial networks, both effects are present: On the 
one hand, links allow agents to diversify risk. On the other hand, agents with many links 
tend also to import distress from others (Stiglitz, 2010) and are exposed to amplifica-
tion effects such as bank runs or trend reinforcement (Battiston et al., 2012b). Thus it 
is highly misleading to transpose in financial networks the results from the literature on 
cascading models in other fields without realizing what mechanisms are at work from 
a dynamical point of view. Usually cascade models and contagion have been studied 
mostly in separate settings. Instead, they need to be taken into account simultaneously 
in order to understand the role of network topology as was recently shown in (Roukny 
et al., 2013).

1.3 Issues on Financial Contagion and Networks

In economics, there is an established literature on default cascades that started from 
the realization that when financial institutions are connected in a network of liabilities 
and claims it becomes non-trivial to find out how much each owes to each other in case 
some of them default. The pioneering work of Eisenberg and Noe (2001) has formalized 
the problem in terms of a «fictitious default sequence» based on a fixed point approach. 
Essentially, given the full knowledge of the balance sheets in the bank networks, one or 
more banks are shocked in the beginning and new defaults are determined recursively 
together with the new values of the claims of those banks who survive. In principle, 
the total loss induced to the system by the default of a specific bank, provides also an 
estimation of how systemically important that bank is. A number of works have applied 
or extended this framework in a number of theoretical and empirical contexts and this 
works represent the state-of-the-art in stress-tests carried out at central banks (Cont et 
al., 2011; Elsinger et al., 2006; Gai and Kapadia, 2010; Mistrulli, 2011).

There are some problem with the traditional approach of default cascades. Typically, 
the exposure of a bank to another single bank is smaller than its equity. This is the result 
of regulations that over the years, even before the 2008 crisis were aimed at containing 
domino effects. This means that the default of one single bank does not cause any other 
default and the stress test indicates that the banking system is robust. There is a need 
to carry out stress tests that incorporate additional effects so to better explain what we 
observe empirically.

The first problem with the traditional approach is that in reality, when a bank faces a 
loss due to the default of a counterparty this may trigger additional losses, due for instance 
to the presence of short-term creditors who may decide to run on the bank. Section 2 
will describe how this can be captured in a simple model and what insights we gain. In 
particular, this model delivers an interesting perspective regarding an important question, 
namely about what would be the optimal architecture of financial systems. For instance, 
several empirical studies show that financial networks are highly heterogenous in the 
number of contracts that each bank engages in – the «degree»– (Boss et al., 2004; Iori, 
De Masi, Precup, Gabbi and Caldarelli, 2008; Soramäki et al., 2007) and it is not clear 
how they could be made more resilient.
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The work of Roukny et al. (2013) adopts the model developed in Battiston et al. 
(2012a) and carries out a comprehensive study of the interplay of the main drivers of 
systemic cascades: (1) network topology, (2) individual banks’ capital ratios, (3) market 
illiquidity and (4) centrality of the banks initially shocked. Notice that such an extensive 
analysis is not trivial from a computation point of view. In this respect, the challenge 
is to find the right balance: the default cascading dynamics is simple enough to allow 
to run very extensive simulations on a variety of scenarios. At the same time, the model 
is derived from basic facts of banks’ balance sheets and very much in line with those 
used in the stress tests (Cont et al., 2011; Elsinger et al., 2006; Gai and Kapadia, 2010; 
Mistrulli, 2011).

The results show that, in general, the architecture of the network (the «topology») 
does not matter when the asset market is liquid. In contrast, it matters a great deal when 
the market is illiquid. It is also not true that certain topologies are always superior to 
others. In particular, the so-called scale-free networks (see Appendix) can be both more 
robust and more fragile than homogeneous architectures. This finding has profound 
policy implications. It means that the optimal architecture depends on the level of 
market liquidity and suggests that regulators should be aware of the topology they are 
confronted with, before making decisions regarding liquidity injections. An illustration 
of what insights policy makers could obtain using live information from interbank mar-
kets, is obtained by running the model on the historical data of an electronic interbank 
market (the e-mid) from 1999 to 2011. From there one can see, with certain caveats, 
what would have been the effect on systemic risk of liquidity interventions in a range 
of scenarios regarding capital ratios and market illiquidity. Overall, this finding suggests 
that regulators could broaden the focus of their attention from capital buffers and bank 
size to the other dimensions that play a crucial role for resilience.

The second problem is that defaults are rare and not the only events that matter for 
the spreading of distress. Even if the obligor of a loan does not default, the fact that its 
equity is eroded implies that the market value of its obligations decreases. Because they 
are held by the counterparties there will be an effect, in turn, on their equity as well. 
There is no agreement on how we should quantify precisely the extent of this devalua-
tion, which makes it difficult to develop a fully fledged model of this phenomenon. Yet, 
the effect is there and it may be substantial. In Section 3, we describe how this can be 
captured in an indicator to assess the systemic impact – DebtRank – of institutions even 
when no bank goes in default.

However, it is important to be able to assess the systemic importance of institutions 
not only in terms of contagion, but also in terms of liquidity provision. In Section 4, we 
see how, again, importance is only weakly correlated to size and other aspects have to 
be taken into account.

2 Default Cascades With Bank Runs

The model. In the model of default cascades with bank runs, the economy consists 
of N banks with the following balance sheet structure. The assets of each bank i include 



Systemic Risk in Financial Networks  135

Journal of Financial Management Markets and Institutions, vol. 1, n. 2, 129-154

interbank assets Ai
I  (i.e. mid and long-term investments in obligations of other banks) 

and external assets Ai
E  (assets not directly related to any bank in the system). Similarly, 

liabilities include interbank liabilities and external liabilities. The external assets include 
short-term and thus liquid assets Ai

ES  and less liquid ones, denoted as Ai
EM . The latter 

can be liquidated but, potentially, at a loss that depends on how illiquid is the market 
for those assets at the moment of the sale. Liabilities include interbank liabilities that 
are assumed to be mid-long term, and external liabilities, denoted as Li

ES  that instead are 
short-term and we assume are owed to creditors external to the banking system under 
focus.

Following a well-established approach (Eisenberg and Noe, 2001), we define as de-
fault of bank i at time t, the event of the equity of bank i becoming negative. We are 
interested in investigating how the number of banks defaulting in the system depends 
on the structure of the balance sheet interlock among banks as well as on the liquidity 
of the market of external assets. In the following, it turns out that it is mathematically 
convenient to focus on a capital ratio that measures the equity of bank i relative to its 

total interbanks assets, defined as 
A

A L
i

i
I

i ih =
- , where Ai and Li are the total assets and 

liabilities of bank i.
We consider the usual mechanism by which a bank faces losses due to the default 

of some of its borrowers. As a benchmark, we consider the case of zero recovery rate, 
although this condition can be easily relaxed in the model. In addition, after suffering 
from losses due to the default of some borrowers, the short-term creditors of the bank 
may decide to run on their loans and refuse to roll over the short-term funding. As a 
result, bank i sells the assets necessary to pay back those liabilities. First, the bank sells 
the liquid ones. If needed it sells also parts of the less liquid ones. Depending on how 
illiquid the market, is in order to sell the latter assets, the bank is forced to sell them 
below the market price («fire-selling») incurring in additional losses.

The quantities that matter in the above sequence of events are the following: the 
difference L Ai

S
i
S-  between the amount that bank i has to repay and the amount that 

can be liquidated promptly; the ratio q between the market price for the less liquid 
assets and the fire selling price at which those assets have to be liquidated in order to 

find buyer. As a result, the parameter b q
A

L A1i
i
L

i
S

i
S

= -
-

^ h  represents the loss incurred 

by bank i in the process, measured in relative terms with respect to its total interbank 
assets.

The sequence of events in the model is as follows. There is a number of initial 
defaults that can, in turn, induce the default of others and the process stops when 
no more default events are observed. At the end, the size of the cascade, i.e., the total 
amount of defaulted agents, is recorded. The default is determined by the equity of a 
bank becoming negative. The equity of each bank may decrease over time as a result of 
two mechanisms. First, bank i faces the default of a counterparty, which implies that 
the loss of the corresponding asset Aij, while liabilities of i remain the same. Second, 
bank i incurs a credit run from its short-term external creditors whenever the number 
of failures among the counterparties of i, relatively to the system size, raises above a 
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certain threshold that depends on bank’s i capital ratio. Formally, the condition reads as 

N
k t

0fi
i2 h c

^
^

h
h , where c is a parameter that measures the sensitivity of the external 

creditors. Notice that the bank run could be modeled as a game among the short-term 
creditors in line with an established stream of works. However, here we model it in 
reduced form in light of the fact that the macroscopic behavior of the default cascade 
depends on the conditions that trigger the bank run and not so much on the way the 
bank run unfolds.

In this model, the size of the cascade, i.e., the total amount of defaulted banks, can 
be computed analytically under some approximation regarding the structure of the net-
work and correlations across defaults in the neighborhood of each bank (Battiston et al., 
2012a). Those analytical results are confirmed by simulations and extended to the case 
of heterogeneous networks (Roukny et al., 2013). Here we summarize the results that 
are most relevant for the policy debate on capital ratio requirements.

Even in a minimal model, as the one considered here, if we want to investigate the 
resilience of different network architectures, there are several degrees of freedom to 
consider. In order to reduce the number of scenarios that have to be examined, we make 
the following choices.

• We vary the type of shock: randomly vs targeted. In the first case, the banks that are 
shocked in the beginning are chosen at random while in the second they are chosen based 
on their degree of centrality.

• We vary the correlation between capital ratio and degree. In case of no correlation, 
the structure of the balance sheet is assigned across banks in a way that the capital ratio is 
independent of the number of contracts the bank holds. In the case of positive correlation, 
the higher is the degree of the bank the higher is the capital ratio, and vice versa in the case 
of negative correlation.

• We vary the degree distribution by comparing scale-free networks with random 
graphs and regular graphs (see Appendix). 

• We vary the market illiquidity by means of the parameter b defined above.
A combination of the above choices is indicated in the following as a «scenario». In 

each scenario then, we study the cascade size (that is the fraction of banks that default in 
the end) as a function of the average out-degree k in the network and the average value 
m of initial individual capital ratio. The initial capital ratio hi(0) is allocated across banks 
according to a Gaussian probability distribution with mean n and variance v. Negative 
values of hi(0) imply that the corresponding banks are in default at the beginning. We 
refer to these as endogenous shocks. In addition, a fraction y0 of banks is additionally set 
to default. These are referred to as exogenous shocks.

Experimental Set-Up. The initial value of the capital ratio hi(0) is assigned across 
banks as a random variable according to a Gaussian distribution with mean n and 
variance k2 2v v=t  where n and v are exogenous parameters for the experiments. The 
relationship between vt and the average number of connections of the system k reflects 
the assumption that a larger number of credit counterparties leads to a smaller variance 
in the return of the credit portfolio of each agent and, thus, in the individual robustness. 
Capital ratio is either assigned randomly or with respect to the bank’s degree, depending 
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on the scenario implemented. As a gaussian distribution of robustness can produce nega-
tive values, agents starting with hi(0) < 0 are considered to be endogenously set in default. 
In addition, exogenous shocks are introduced by putting some agents with hi(0) > 0 into 
default according to an external parameter y0. For a discussion of the choice of the pa-
rameter values see Battiston et al. (2012a). Simulations are carried out with a population 
of 1,000 banks. Every simulation generates a network realization and runs the cascading 
process on such realization. For a given topology, we run 1,000 simulations for each pair 
of parameter values. For each pair of values of (b, m) and (k, m), we record the average 
cascade size and the standard error. We then determine the curve representing the frontier 
in the parameter space between the region where large cascades occur and the region 
where small cascades occur.

Formally, our network is defined as directed and weighted. The direction of a link goes 
from the lender to the borrower and the weight of a link corresponds to the amount at 
stake from the lender’s perspective. We assume that each bank holds an equally weighted 
portfolio i.e., the relative exposure to each borrower is equal and amounts to 1/ki, where ki 
is agent i’s number of borrowers. Since networks are directed, two different distributions 
should be distinguished. The out-degree distribution characterizes the lending behavior, 
while the in-degree distribution describes the borrowing behavior. Here we report on the 
case in which in and out degree are correlated, but other cases have been studied too.

Empirical dataset of the e-MID interbank market. For the simulations on empiri-
cal data, we use a collection of daily snapshots of the Italian interbank money market 
originally provided by the Italian electronic Market for Inter-bank Deposits from January 
1999 to December 2011. The data is maintained by e-MID S.p.A., Societa Interbancaria 
per l’Automazione, Milan, Italy and we refer to it as e-MID in the text. After aggregating 
the lending relations on a monthly basis, we extract the structures of interaction between 
banks. Hence, we use a collection of empirical networks describing the chronological 
evolution of the successive topologies that the Italian interbank money market went 
through from the beginning of 1999 up to the end of 2011.

The results for the cascade size are illustrated in the form of phase diagrams where each 
curve in the diagram represents, for a given network topology, the systemic risk frontier 
between high systemic risk (very large cascades, region in color) and low systemic risk 
(very small cascades, region in white) in the parameter space of market illiquidity b and 
average capital ratio m. As we can see, moving upwards and leftwards corresponds to 
moving to a system with higher capital ratios and higher liquidity. A different color is 
associated with each topology so that the diagrams allow to see how network topologies 
are affected by illiquidity and what level of average capital ratio would be needed in order 
to move the banking system into the safe region.

Figure 1 left (right) refers to the case of positive (negative) correlation between capital 
ratios and centrality degree. We can see that the systemic risk frontier for the scale-free 
topology is below the others meaning that this topology is more robust against random 
shocks in case higher capital ratios are allocated to more central banks. The opposite 
occurs when more central banks have smaller capital ratios. However, the differences are 
important only when the market illiquidity is sufficiently high (b large than 0.3). When 
the shocks are targeted towards the most central banks, the fragility of scale-free networks 
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is exacerbated for any level of market liquidity (results not shown). Interestingly, the lat-
ter result is in line with classical works in complex networks using a different notion of 
robustness, i.e. measured in terms of the size of the largest connected component that 
remains after the shock.

We can also apply the same approach to the empirical data of a specific interbank 
market. Notice that this is not done as a validation of the default cascade model ( this 
would require to follow chains of default events across the network). The dataset consists 
of a collection of monthly snapshots of the network of the so-called e-MID interbank 
money market. Links represent lending flows among banks aggregated at the time scale 
of a month. The data spans the period between January 1999 and December 2011. We 
analyze the evolution of systemic risk frontiers for the months of January of each year 
between 1999 and 2011.

As shown in Figure 2, the frontiers of the periods 1999-2008 (a smooth and linear 
dependence on illiquidity b) can be separated from those of the periods 2009-2011 
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Figure 1: Frontier of large cascades in the space (b, m) representing average capital ratio across banks 
and market illiquidity. (left) Random exogenous defaults and positive corre- lation between degree and 
individual robustness. (right) Random exogenous defaults and negative correlation between degree 
and individual robustness, Networks have an average degree,•k = 20. Other parameters values are: 
cs = c10−3, cs = 0.13 v = 0.3, y0 = 0.04.
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(curves are located at lower values of individual robustness m and tend to be less sen-
sitive to illiquidity). The years of 2007 and 2008 correspond to the highest systemic 
risk frontier while the year of 2009 corresponds to the lowest frontier (i.e. less systemic 
risk). In order to understand how to interpret this result, it is important to recall that 
the period between January 2008 and January 2009 corresponds to the post-Lehman 
Brothers era, marked by (i) an important rise of interbank rates for all major curren-
cies and (ii) a takeover of central banks to provide liquidity and guarantees to banks. 
As banks became more reluctant to engage in credit exposures with other banks and 
started trading with the central bank (that is not present in our dataset), default cas-
cades across the interbank market became obviously much less likely to be triggered. 
This explains the sudden drop of the 2009 frontier with respect to the previous years 
and its smaller sensitivity to illiquidity (i.e. smaller slope). After 2009, banks slowly 
started to engage again in the interbank market making it more sensitive to illiquidity 
as shown by the 2010 and 2011 curves in Figure 2.

In particular, the case of 2009 provides insights on the impact of big provision policy 
guaranteed by the European Central Bank (ECB) at that time. Starting from the Fall of 
2008, this action along with the important rise of interbank rates made banks less active in 
the interbank market. This, in turn, decreased the sensitivity of the market to illiquidity: 
in the presence of a smaller system in terms of both size and density, the amplification 
phenomenon depicted by our model loses its impact. In simpler terms, banks lend less to 
each other, thus reducing the impact of a credit run on any bank. Finally, we can imagine 
that this apparent benefit is not without drawbacks since the ECB is not recorded in our 
data: part of the previously captured risk has been transferred from the e-MID to the 
ECB. In light of the results from the synthetic simulations, introducing the ECB would 
indeed increase the heterogeneity of the underlying network. The case would become 
extreme: the ECB would appear as the node of last resort to avoid a system collapse.
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Figure 2: Frontier of large cascades evolution of the e-MID market in the period between January 
1999 and January 2011 under random exogenous defaults and random individual robustness distir-
bution. Impact of illiquidity on the structure of January of each year, v = 0.3, y0 = 0.04, cs = 0.13. 
For convenience, we use cs = c10−3.
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These results illustrate how models of this type can be used to understand the sys-
temic impact of a shock on an interbank market from a macro-prudential point of view, 
taking into account the networks for various levels of capital ratios and illiquidity. This 
can help central bankers in designing ex ante capital structure requirements and ex-post 
liquidity provisioning schemes.

3 DebtRank

3.1 Algorithm

DebtRank is a measure of the systemic impact of an institution on the others that was 
introduced in Battiston et al. (2012c). DebtRank of bank i, denoted as i, is a number 
measuring the fraction of the total economic value in the financial network that is poten-
tially affected by the distress or the default of bank i. The method differs from the ones 
based on the default cascade dynamics described in Section 2. In those models, below 
the threshold no impact is propagated to the neighbors. Instead here in this model, the 
distress propagates even below the threshold of default.

In order to explain the functioning of the method, we introduce as in Section 2 a 
directed network in which the nodes represent institutions and the links represent finan-
cial dependencies. We denote the amount invested by i in the funding of j as Aij. Thus, 
A is the weighted adjacency matrix of the investment network. The total value of the 
asset invested by i in funding activities is Ai = Σl Ail. We denote by Ei the tier 1 capital 
the capital of i, which works as a buffer of i against shocks Cont et al. (2010); Mistrulli 
(2011). Bank i defaults when Ei ≤ 0.

It is important to notice that we are interested in the situation in which each banks’ 
liabilities are accounted at their face value while assets are marked to market. The intui-
tion that DebtRank aims to capture is that when, ceteris paribus, the equity of i decreases 
because of a shock, even if not to the point of inducing its default, the market value of 
the obligations of i decreases because bank i’s distance to default is smaller or in other 
terms, bank i is less likely to meet its obligation at maturity. Moreover, because others 
have bank i’s obligation in their balance sheet their equity decreases too and the distress 
propagates in the network.

The amount by which the market value should decrease is not trivial to determine. 
In fact, the new market value of bank i’s obligation depends on bank i’s probability of 
default and the recovery rate on its assets. The problem is that both these two quantities 
depend on the market value of the obligation of other banks that bank i has in its own 
portfolio. Currently, there is no model in the literature that allows to compute these 
quantities in a system context.

We can conjecture that the relation between losses on equity and losses on obligations 
is non-linear: indeed when small losses on equity should not be reflected in any loss on 
obligations, while big losses that almost deplete all the equity should all have the same 
effect. Because we do not have at the moment a theory for this or a systematic empirical 
stylized fact, modeling this non linearity would imply us to introduce new parameters. For 
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the sake of parsimoniousness, in its current formulation DebtRank assumes the simplest 
relation between losses on equity and losses on obligations that is a relation of propor-
tionality: we assume that if the market value of the obligation Aij of i to j decreases, in 
relative terms, as much as the equity of i. So if the equity Ei of i decreases by, say, 20%, 
then the value of its obligation Ajj does too. In turn, the equity of j will also decrease, 
proportionally to the exposure of j to i. As a result, now the obligation of j is worth less 
and the effect propagates down to some other counterparty k. In future formulations, 
the relation equity-obligation could be modelled in a more realistic way. The linear case 
is however a paradigmatic case that is useful to test as the most obvious benchmark.

We can capture the mechanism just described by defining the impact of i on j as 
Wij = min{1, Aij /Ej}. Thus, if the loss exceeds capital, the impact is 1. Notice that the 
matrix W is, in general, neither column-stochastic nor row-stochastic. We further take 
into account the economic value of the impact of i on j by multiplying the impact by the 
relative economic value of the node j, vj = Aj /ΣlAl (other proxies could be taken for vj). 
The value of the impact of i on its neighbours is then Ii = Σj Wijvj, which measures the 
fraction of economic value in the network that is impacted by i directly.

We now want to take into account the impact of i on its indirect successors, that 
is, the nodes that can be reached from i and are at distance 2 or more. To this end, we 
introduce the following process. To each node we associate two state variables. hi is a 
continuous variable with hi ∈ [0, 1]. Instead, si is a discrete variable with 3 possible 
states, undistressed, distressed, inactive: si ∈ {U, D, I}. Denoting by Sf the set of nodes 
in distress at time 1, the initial conditions are: hi(1) = }∀i ∈ Sf ; hi(1) = 0∀i ∉ Sf , and 
si(1) = D, ∀i ∈ Sf ; si(1) = U∀i ∉ Sf . The parameter } measures the initial level of 
distress: } ∈ [0, 1], with } = 1 meaning default. The dynamics is defined as follows, 
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for all i, where all variables hi are first updated in parallel, followed by un update in 
parallel of all variables si. After a finite number of steps T the dynamics stops and all the 
nodes in the network are either in state U or I. The intuition is that a nodes goes into 
distress when a predecessor just went into distress and so on recursively. The fraction 
of propagated distress is given by the impact matrix Wij. Because Wij ≤ 1 the longer the 
path from the node i initially into distress is and node j, the smaller indirect impact on j 
is. Notice that when a node goes in the D state, it will move to the I state one step later. 
This means that if there is a cycle of length 2 the node will not be able to propagate an 
impact on its successor more than once. This condition satisfies the requirement, men-
tioned earlier, of excluding the walks in which an edge is repeated. An illustration on a 
simple example is provided in Section 3.2.1.
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The DebtRank of the set Sf is then defined as:

(3) R h T v h v1j
j

j j
j

j= -^ ^h h/ / ,

where R measures the distressed induced in the system, excluding the initial distress. 
If Sf is a single node the DebtRank measures the systemic impact of the node on the 
network. In this case, it is of interest to set } = 1 and to see the impact of a defaulting 
node. If Sf is a set of nodes it can be interesting to compute the impact of a small shock 
on the group. Indeed, while it is trivial that the default of a large group would cause the 
default of the whole network, it is not trivial to anticipate the effect of a little distress 
acting on the whole group.

3.2 Applications of DebtRank

The largest borrowers of the FED’s 2008 emergency program. DebtRank over-
comes the problem that when evaluating the systemic importance of an institution in a 
stress-test it is difficult to see any effect at all on the other institutions if only default is 
taken into account. As we discussed in Section 2, one can introduce bank runs or other 
negative externalities that amplify the initial shock but that comes at the cost of making 
additional assumptions in the model. DebtRank is a complementary approach.

A first application of DebtRank on empirical data was carried out in Battiston et al. 
(2012c) using a synthetic dataset of interbank exposures reconstructed under various 
scenarios based on the mutual investments of banks in each other’s equity. The work 
focuses on the international banks that were the largest borrowers from the FED’s 
emergency program of 2008-2010. The use of synthetic exposure data is due to the fact 
that cross border exposures among large institutions are unknown, even to regulators, 
despite the size of the players. Moreover, the systemic impact of each institution is 
computed with respect to the others in the group and not with respect to the financial 
system as a whole. Therefore, the interest of the exercise is not so much in the value 
of the systemic impact but rather in the illustration of what could be done if the data 
were available. Some results are robust across the range of values for the rescaling of 
the mutual exposures. The first is that systemic impact and size are weakly correlated, 
especially in bad times, i.e. when balance sheets are weaker. The second, which is also 
related to the first result, is that in bad times smaller institutions can be as systemically 
important as the biggest ones.

Here, we report on a type of analysis that was not covered in Battiston et al. (2012c). 
Indeed, DebtRank allows us to compute not only the systemic impact of each institu-
tion but also the vulnerability of that institution to an indirect shock, that is, a shock 
hitting other institutions. This is measured by the final value of hj in Eq. (1), under the 
assumption that all banks i are hit by a small shock.

The scatter plots in Figure 3 show the values of DebtRank versus vulnerability for 
the top 22 largest borrowers of the FED in two periods of time. The size of each bubble 
is proportional to the outstanding debt of the institution towards the FED while the 
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color reflects its fragility, measured as the ratio of debt towards the FED over market 
capitalization in the given period.

In March 2008 (left panel), the outstanding debt was very low or zero, hence most 
nodes appear small and have levels of DebtRank below 0.4, while the vulnerability values 
are small and comparable among each other. In March 2009 (right panel), several insti-
tutions have a DebtRank larger than 0.5, i.e. each can impact, alone, the majority of the 
also economic value in the network. Moreover, some have a high value of vulnerability, 
implying that they would go into distress if there is a shock to the counterparties. In this 
period institutions have also a much larger debt towards the FED and a higher fragility, 
since most bubbles are dark red. Highly fragile institutions that also have high impact 
would be eligible for a more strict follow-up by banking supervision.

As we describe later on in this section, a similar analysis has been conducted by other 
authors on the Brazilian interbank market (Tabak, Souza and Guerra, 2013).

The interbank exposure data set of Bank of Italy and Central Bank of Brazil. The 
DebtRank algorithm has been applied in some central banks to the analysis of systemi-
cally important financial institutions in national interbank markets. We summarize here 
some of the findings that are relevant to the present discussion.

The DebtRank analysis of the Italian interbank market reveals that systemic risk in such 
part of the financial market has decreased in the period 2008-2012 (Battiston, di Iasio 

Figure 3: DebtRank vs vulnerability. Scatter plot of DebtRank versus vulnerability measured as 
the distress experienced by the institution as a result of a shock of 10% on the equity of all the other 
institutions in the network. The size of each bubble is proportional to the outstanding debt of the 
institution while the color reflects its fragility, defined as the ratio of debt over market capitalization 
in the given period, as in the previous section. Left) March 2008. Since the outstanding debt was very 
low or zero, most nodes appear small and have levels of DebtRank below 0.4, while the vulnerability 
values are small and comparable among each other. Right) March 2009. Many institutions have a 
DebtRank larger than 0.5, i.e. each can impact, alone, the majority of the economic value in the 
network. The outstanding debt in this period is close to the peak for all the institutions, as reflected 
by the size of the bubbles. Notice, also a higher fragility, most bubbles are dark red, although with 
some heterogeneity.
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and Infante, 2013). This can be interpreted as a decline of the systemic risk in the market 
conditional to a shock to one or more banks. It turns out that this decline can be explained 
by the decrease in the number and in the volume of contracts that has occurred in the 
same period in the unsecured interbank market. In principle, the decline of systemic risk 
could also be due to the concurrent decrease of banks’ leverage as a result of the process 
of recapitalization of their balance sheets. However, the analysis in Battiston, di Iasio and 
Infante (2013) tries to disentangle the two mechanisms by constructing a dataset where 
the exposures are those from 2008 while the capital is taken from 2012, or viceversa. In 
this way, looking at hypothetical situations the authors find that the effect of the decrease 
in network density dominates the effect of recapitalization. Indeed, the decrease of the 
network density is related to the onset of the sovereign bond crisis of 2010, which caused 
a drop in the amount of wholesale funds reaching the domestic Italian interbank market 
from international institutions. This first finding highlights the applicability of DebtRank 
to investigate the effect of recapitalization policies in real interbank markets. It also points 
to the importance of multi-level financial networks since interlinkages across different 
markets may shift systemic risk from one market to another.

As a second relevant finding, the empirical analysis of the italian data confirm the 
results found also on the FED data that while DebtRank and bank’s size tend to be 
positively correlated, in general the relation is non linear and banks with similar size 
may show very different DebtRank values. In particular, in the Italian market we observe 
some medium-size institutions that reach significant values of DebtRank because they 
act as liquidity hubs for small, co-operative banks.

The analysis of the Brazilian interbank market (Tabak, Souza and Guerra, 2013) uses 
DebtRank to carry out several exercises. They first identify institutions that have high 
impact and are fragile at the same time. Institutions with the highest impact and par-
ticipation in the interbank market are found to be not very fragile as measured by their 
leverage. Nevertheless, there are institutions with high impact and high participation in 
the market that are fragile, with significant leverages.

The second analysis combines the impact of an institution as estimated by DebtRank 
with the probability that such an institution defaults, as given by the Merton formula. 
The result is an expected impact of that institution. The default probabilities are com-
puted for each individual bank independently, neglecting joint default probabilities and 
conditional default probabilities. Large institutions tend to present lower expected impact 
due to their smaller default probability.

A third analysis looks at groups of systemically important institutions. One aspect is 
whether the composition of the top 10 institutions ranked by DebtRank is stable. Indeed, 
during the 1-year period, the institutions that enter this group are only 14 overall while 
5 of them belong to the group at all times. Further, in order to select institutions that 
could more likely default together, the authors look at the default probabilities correla-
tion matrix computed for the top 40 DebtRank institutions and compute the minimum 
spanning tree to extract those that are closest. The underlying idea is that common factors 
could increase the probability of joint defaults. The authors extract what can be seen as 
a proxy for the groups joint default probability and compute then the systemic impact, 
were the institutions in the group to default simultaneously.
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DebtRank has also been used in an agent-based model by some authors (Thurner and 
Poledna, 2013) to investigate how systemic risk in financial networks could be reduced 
by increasing transparency. The DebtRank of individual banks is made visible to the 
other banks in the model and a rule is imposed to reduce interbank borrowing from 
systemically risky nodes.

4. Controllability

The final step in the possible actions related to the issue of systemic risk is to understand if 
regulators may be provided with some instrument to drive the dynamics of financial systems 
towards any desired state. One of the most interesting approaches that has appeared recently 
has to do with the concept of controllability. Structural controllability in this context has 
to do with the possibility to drive the dynamics of a specified system into a particular state. 
In order to have a mathematically well defined theory we need to define a state function on 
the vertices of our system. That is, on every vertex i we have a variable xi so that the n-ple 
∙x = (x1, x2 ... xn) represents the state of the whole system. We assume a linear dynamics of 
the form dx(t)/dt = Ax(t) + Cu(t) where xi = 1, ..., n is the state variable for the n nodes, A is 
an n × n «influence» matrix representing the way every node is influenced by others. The 
components of the vector u correspond to external functions that are applied to a subset 
of nD nodes and C is an n × n «control» matrix of external weights.

The mathematical basis of structural controllability has been recently extended to 
the case of networks (Liu et al., 2011). The idea is that the whole network can be 
«controlled» by acting on a specific subset of nodes, which counterintuitively, hap-
pen often no be the most connected ones. The mathematical passage necessary to 
understand the topic is to look for the maximum matching in the oriented graph. In 
steps it works as follows:

• The first step is to compute the matching edges A matching in a graph G = (V, E) is 
a set of edges, none of which have a common end (vertex).

• The second step is to collect the endvertices of the matching edges (those with arrows 
pointing to them) that form the matching vertices.

• The nodes untouched form the set of drivers on which we can «economically» to 
change the state of the system.

The last passage is ensured by the so-called minimum input theorem stating that the 
minimum number of nodes to be controlled (drivers) corresponds to the number of 
uncovered nodes in a maximum matching of the corresponding graph. A typical case is 
shown in Figure 4.

Despite the technical difficulties (typically there is a huge number of possible configu-
rations all with different drivers set), the possibility to drive a financial system towards 
a desired state is very tempting. Indeed, if this were true we could in principle give to 
regulators an instrument to drive all the banks into this situation, The specific case study 
considered (Delpini et al., 2013) assessed the controllability of interbank money markets 
and in particular the Italian electronic trading system (e-MID), for which a time series 
of micro data is available. The data presented in the analysis is composed of 2,750 daily 
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snapshots of the Italian interbank money market. Data spans from January 4th, 1999 to 
September 30th, 2009 and for the most part, the transactions correspond to overnight 
exchanges of deposits among banks (Fig. 5).

In this study the state variable xi is the level of funding that bank i provides to the 
others. Similarly, xi depends on the funding that the same bank gets from its neighbours. 
This assumes that banks influence each others through «funding contagion» and that 
the influence of bank i on j is somewhat proportional to the funding provided by i to 

aUnmatched vertex

Unmatched vertex

Unmatched vertex

Unmatched vertex

edcb

Figure 4: The concept of controllability. Starting from network (a) one first finds the matching edges 
(4 different choices in b, c, d, e) and from those the matching vertices. The vertices unmatched needs 
to be driven from external regulation if we want to drive the system towards a desired state.
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Figure 5: A sample snapshot of the daily interbank lending network. Figure from Delpini et al. (2013).
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j. In this mapping, the external «control» corresponds to liquidity interventions of 
central banks in individual institutions of the network. Technically, these interventions 
are liquidity refinancing or, in principle, dedicated credit facilities. While central banks 
cannot actually enforce banks to lend, they can nonetheless provide liquidity to key-role 
banks in the market on a much larger basis than they need. In practice, this could be 
expected to induce very liquid banks to effectively provide liquidity to the other players.

Following the above reasoning, the larger the weight of a link, the larger the impact of i 
upon j and, intuitively, maximising the sum of weights (all weights are positive in our case) 
would mean maximising the sum of the impacts. As mentioned above, even by considering 
a simple step of the network relative to a single day, we deal with a graph where the number 
of maximum matchings becomes really large. In this respect, introducing the constraint of 
maximizing the sum of the impacts reduces significantly the number of configurations. In 
particular, we can attach a weight to every transaction between banks making the hypothesis 
that cash flows between banks are a good proxy of the influence between the banks. The 
maximum matching is then defined as the matching with maximum weight. A typical case of 
driver nodes is shown in Figure 4 where the white vertices represent driver nodes. Remarkably, 
despite the large number of similar configurations, few configurations result in driver nodes 
being the hubs of the network. Indeed, if we analyse the networks constructed from the e-mid 
data, we find that the average degree of the driver nodes (kD) is systematically smaller than 
the average degree of the nodes in the network. This finding holds regardless of the aggrega-
tion level, implying that in the bank network the drivers are typically not the hubs (Fig. 6).

At this point, one could take the fraction of network drivers nD as an indicator of 
control efficiency and robustness. A large value of nD would indicate that the interbank 
system is problematic from a control perspective, since many banks would be responsible 
for variations of the state of the whole network. Conversely, regulators and policy mak-
ers would appreciate small values of nD. Another interesting finding from the analysis of 
the e-mid data is that looking at the daily evolution of the lending network would be 
misleading. Indeed, at such time scale the number of drivers is quite high (about 60%).
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Figure 6: Time evolution of the fraction of controlling banks: the controllability depends crucially 
on the time resolution. At the monthly aggregation scale less than 40% of the banks drive the system. 
Figure from Delpini et al. (2013).
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This is because more than half of the banks are drivers. However, our study reveals 
that the fraction of drivers decays according to a power law as the aggregation scale gets 
larger as shown in Figure 6.

However, the nD values of drivers, on average, decrease monotonically as a function 
of the aggregation scale and at the scale of the month the network appears to be «con-
trolled» by less than 30% of the banks. With values of nD about 30% it becomes more 
feasible for the regulator to implement targeted interventions on the set of driver banks. 
Incidentally, notice that in other systems such as the WWW or the Internet typically a 
higher fraction of drivers has been found, e.g. nD > 50%.

5 Discussion

In this paper we have discussed some of the insights that network models bring to the 
investigation of financial systems.

The insight from models of default cascades in presence of illiquidity is that looking 
at capital ratios only is not enough, but also looking at topology only is not enough. We 
actually need to look at the interplay of topology, liquidity and capital buffers. When 
liquidity is high, the architecture of the market does not play any role: different net-
works provide similar stability profiles. When liquidity is low, it makes a big difference 
whether the network is very heterogeneous (scale-free) or homogenous (regular graph). 
However, the distribution of capital buffers (e.g. whether the hubs are more capitalized 
or less capitalized) can reverse the results. Given the current context where banking 
regulation remains mainly at the individual level, those results show that the way claims 
and liabilities are intertwined within financial markets, creating highly complex financial 
networks, should not be neglected. Therefore, the findings suggest the need for regula-
tors and policy makers to acquire a sufficiently detailed map, not only of the individual 
balance sheets but also of the structure of mutual exposures and market conditions they 
are confronted with in order to make better decisions. 

The insight from the various works on DebtRank are that there is more to systemic 
importance than size and position in the network, but the condition of the balance 
sheets of counterparties is crucial to determine the impact that an institution can cause 
to the system.

Finally, the main insight from the work on controllability is that the top «controlling» 
institutions are often not the hubs in the network nor the major lenders. Moreover, the 
set of such institutions, which are systemically important for the liquidity, may vary with 
the time scale that we look at. This implies that effective regulatory supervision cannot 
simply focus on the biggest banks and that the notion of systemically important bank 
should take into account the time scale of the transactions.

Most macro-prudential policies for financial stability focus on individual bank ratios 
such leverage or capital adequacy ratios or equity ratios. Then, in terms of assessing 
the systemic importance of the various institutions, most of the attention has been on 
bank size. The dimension of interconnectedness (meant as amount of exposures on the 
interbank market) has been included (along with others) in the IMF/BIS/FSB report 
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submitted to the G20 Finance Ministers and central bank Governors in October 2009. 
Moreover, the Basel Committee on Banking Supervision (2013) has recently suggested 
to include the dimension of complexity, as a measure of the cost of resolving the bank, 
which depends on the amount of notional OTC derivatives held by banks.

In the context of such debate, three interrelated dimensions play a major role in the 
analyses presented earlier: interconnectedness, complexity and correlation.

As we have seen earlier, in the model of default cascades higher interconnectedness 
leads to higher systemic risk when coupled with illiquidity and low capital buffers. The 
DebtRank method also shows that a higher interconnectedness among banks increases 
the systemic impact of each bank over the others. In particular, if a bank keeps its amount 
of exposures and diversifies them over a larger number of counterparties, this is beneficial 
for the individual bank as it reduces the loss from any single counterparty. However, 
such diversification increases the chances that the bank will act as channel to spread the 
distress from a shocked bank to a third one. Overall, a fully connected network spreads 
around more distress than a sparse network. 

More in general, besides the interconnectedness arising from the interbank lending, it 
is useful to think of the interdependence of balance sheets and payoffs of banks arising 
from various financial instruments. A general insight from the study of financial net-
works is that interdependence is a source of systemic risk, as soon as positive feedbacks 
are present in the system (Battiston et al., 2012a). Now, positive feedbacks are very often 
present in financial markets, either visible or latent. An example is the procyclical spiral 
fire-selling-asset devaluation, which can be triggered by a change in agents’ expectations 
on the future value of that asset. Clearly this can also be seen as an effect the potential 
illiquidity of the market for assets. Another example is the fact that the very reaction of 
creditors (e.g. tightening credit conditions) to a first deterioration of an obligor’s equity 
ratio, is likely to induce its further deterioration. This is also a manifestation of a positive 
feedback. In the natural sciences, a system where positive feedbacks prevail is prototypical 
of a unstable system. If its units are also highly interdependent it is immediately recog-
nized as prone to systemic risk. 

The complexity of banks may well be seen as to contribute to their interdependence, 
due to the OTC derivatives contracts that a bank establishes with others. The argu-
ment that these contracts help to diversify and reduce risk is controversial (Battiston 
et al., 2013). While the dimension of complexity did not appear directly in the models 
presented above, the complexity of financial instruments is likely to contribute to the 
potential illiquidity of the market. Indeed when players start questioning the value of an 
asset, its complexity is not of help in making counterparties willing to buy it. Another 
problem of complexity is that it makes room for information asymmetries that in bad 
times can be exploited by market players as an argument for being too complex-to-fail 
(Battiston et al., 2013). This exacerbates the effect of the findings from the DebtRank 
method where in times of low capitalization all banks become systemically important. 

Finally, the correlation of banks’ behavior is another important dimension that indi-
rectly contributes to the potential for market illiquidity. Clearly, the more banks have 
made correlated choices in their portfolio, the stronger will be the effects when they all 
try to fire-sell the same type of asset. 
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Overall, the findings discussed in this paper and in other cited works in financial 
networks (e.g., Battiston et al., 2013; Gai et al., 2011), suggest that in order to contain 
systemic risk, besides maintaining capital ratios, it is necessary (but maybe not sufficient) 
to decrease simultaneously the interrelated dimensions of interconnectedness, complexity and 
correlation. It remains an open and question how to achieve this objective. For instance, 
it is challenging to design mechanisms to contain interconnectedness and correlation. 
However, in our view, the various proposals to reform the structure of banks and the 
architecture of the financial system should be first tested against their ability to deliver 
progress in this direction. As an example, splitting banks in commercial and investment 
arms does not, per se, prevent the investment arms of various banks to remain too much 
connected, complex and correlated. Even if balance sheets of the two arms are virtually 
separated, once this compartment of the financial system gets in trouble, the distress will 
propagate to the commercial arms by some other channel. As an urgent future avenue 
of research, we advocate a thorough comparison of different proposals with respect to 
those three dimensions as a prerequisite for a more informed debate. 

6 Appendix

6.1 Network Glossary

We report a list of the definitions that are relevant to the paper.
Consider a simplified banking system composed of n banks and m assets.
• In our context, an interbank network G is the pair (N, E) consisting of the set of 

nodes or vertexes N(G) = 1, ..., n representing banks, and a set of edges E(G), or links, 
representing financial contracts among banks.

• If the network is directed, an edge is an ordered pair of nodes (i, j) representing in our 
context that bank i lends to banks j. A weight Aij can be associated with the edge indicat-
ing, for instance, the nominal value of the contract. If the network is undirected the order 
of the pair is not relevant, (i, j) = ( j, i) indicate the same edge.

• The adjacency matrix. A of size n × n where n is the order of the graph is defined 
as follows. The element Aij is not zero if an edge goes from i to j. The component i, j of Aij 
is the weight of the edge.

• A network is said to be bipartite if the nodes can be grouped in two classes such that 
no edge exists between any two nodes of the same class. In our context the network of 
banks and assets is a bipartite network.

• The neighborhood of a node i is the set Ni = jN : ijE.
• The (connectivity) out-degree, or out-degree of a node i in G, denoted as ki, is the 

number of edges outgoing from i. Similarly we can define the in-degree. If non specified 
we mean the total degree or the degree in the case edges are undirected.

• Hub A vertex with large degree.
• A path between two nodes i1 and ik is a sequence of nodes (i1, i2, ..., ik) such that (i1, 

i2), (i2, i3), (ik1, ik). In other words, it is a set of edges that goes from i1 to ik.
• The distance between two vertexes is the number of edges in a shortest path con-

necting them.
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• The diameter is the maximum value of distance among all the possible pairs of nodes 
in the network.

• A cycle is a closed path, in which the first and last vertices coincide.
• A tree is a subgraph of G without cycles. If it encompasses all the nodes (but not all 

the edges) is called a spanning tree. The root is the only vertex with no incoming edges. A 
leaf is a vertex of degree one that is not the root.

• A connected component in G is a maximal set of firms such that there exists a path be-
tween any two of them. We will say that two components are disconnected if there is no path 
between them. A connected graph is a graph consisting of only one connected component.

• There are several measures of centrality that captures in different ways the impor-
tance of a node or of an edge. For instance, the betweenness centrality of an node capture 
the number of paths that have to go through node i in order to connect all the pairs of 
nodes in the network. The feedback centrality is in itself a class of centrality measures that 
capture the importance of a node in a recursive way, based on a linear combination of the 
importance of the nodes in its neighborhood. Eigenvector centrality belongs to this class 
and it is the solution, if it is exists unique and positive, of the eigenvalue equation associ-
ated with the adjacency matrix, Ax = mx.

• The clustering coefficient measures the fraction of neighbours of nodes, averaged 
across the set of nodes, that are also neighbours. In other words, it measures the number of 
triangles that are realized in the network, relative to the total number of possible triangles 
that could exist in the network.

• A community is an intentionally underspecified notion indicating a group of nodes that 
are more densely connected among each other than with the nodes that are not in the group.

• Motifs. All the possible graphs of a given «little» (e.g. 3, 4, 5 order). Their statistics 
contribute to characterize the topological properties of the network.

• Three classes of network are relevant to this paper, based on the degree distribution:
1. regular where directed edges between nodes are assigned randomly under the 

constraint that all nodes have the same degree k;

Random graph

Scale-free graph

Figure 7: Above a Random Graph and below a Scale-free Network built on the same vertices with 
the same number of edges.
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2. random where the degree distribution follows a Poisson distribution: 
p p1k

n k n k1 1-- - -^ ^h h ;
3. scale-free where the degree distribution follows a power-law distribution: P(k) ∙ k–a.
• The simplest way to visualize the difference is to look at Figure 7 where two di of 

graphs are shown for the same set of vertices and the same number of edges.
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